當(dāng)前位置: 主頁(yè) > 數(shù)學(xué) >

MBA數(shù)學(xué)提分:排列組合與集合的關(guān)系

2014-08-15 10:50 | 太奇MBA網(wǎng)

管理類碩士官方備考群,考生互動(dòng),擇校評(píng)估,真題討論 點(diǎn)擊加入備考群>>

  MBA綜合中數(shù)學(xué)的部分有一部分是考察排列組合與集合的關(guān)系 求排列組合就是求集合元素的個(gè)數(shù)。太奇MBA老師告訴MBA同學(xué)們用集合的觀點(diǎn)去解決排列組合的問(wèn)題,思路會(huì)更清晰。

  一、集合元素的個(gè)數(shù)以最常見(jiàn)的全排列為例,用1、2、3、4、5、6、7、8、9組成數(shù)字不重復(fù)的九位數(shù),則每一個(gè)九位數(shù)都是集合A的一個(gè)元素,集合A中共有9!個(gè)元素。以下我們用S(A)表示集合A的元素個(gè)數(shù)。

  二、集合的對(duì)應(yīng)關(guān)系兩個(gè)集合之間存在對(duì)應(yīng)關(guān)系(以前學(xué)的函數(shù)的概念就是集合的對(duì)應(yīng)關(guān)系)。如果集合A與集合B存在一一對(duì)應(yīng)的關(guān)系,則S(A)=S(B)如果集合A中每個(gè)元素對(duì)應(yīng)集合B中N個(gè)元素,則集合B的元素個(gè)數(shù)是A的N倍(嚴(yán)格的定義是把集合B分為若干個(gè)子集,各子集沒(méi)有共同元素,且每個(gè)子集元素個(gè)數(shù)為N,這時(shí)子集成為集合B的元素,而A的元素與B的子集有一一對(duì)應(yīng)的關(guān)系,則S(B)=S(A)*N

  例1:用1、2、3、4、5、6、7、8、9組成數(shù)字不重復(fù)的六位數(shù)集合A為數(shù)字不重復(fù)的九位數(shù)的集合,S(A)=9!集合B為數(shù)字不重復(fù)的六位數(shù)的集合。把集合A分為子集的集合,規(guī)則為前6位數(shù)相同的元素構(gòu)成一個(gè)子集。顯然各子集沒(méi)有共同元素。每個(gè)子集元素的個(gè)數(shù),等于剩余的3個(gè)數(shù)的全排列,即3!這時(shí)集合B的元素與A的子集存在一一對(duì)應(yīng)關(guān)系,則 S(A)=S(B)*3! S(B)=9!/3!這就是我們用以前的方法求出的P(9,6)

  例2:從編號(hào)為1-9的隊(duì)員中選6人組成一個(gè)隊(duì),問(wèn)有多少種選法?設(shè)不同選法構(gòu)成的集合為C,集合B為數(shù)字不重復(fù)的六位數(shù)的集合。把集合B分為子集的集合,規(guī)則為全部由相同數(shù)字組成的數(shù)組成一個(gè)子集,則每個(gè)子集都是某6個(gè)數(shù)的全排列,即每個(gè)子集有6!個(gè)元素。這時(shí)集合C的元素與B的子集存在一一對(duì)應(yīng)關(guān)系,則 S(B)=S(C)*6! S(C)=9!/3!/6!這就是我們用以前的方法求出的C(9,6) 以上都是簡(jiǎn)單的例子,似乎不用弄得這么復(fù)雜。但是集合的觀念才是排列組合公式的來(lái)源,也是對(duì)公式更深刻的認(rèn)識(shí)。大家可能沒(méi)有意識(shí)到,在我們平時(shí)數(shù)物品的數(shù)量時(shí),說(shuō)1,2,3,4,5,一共有5個(gè),這時(shí)我們就是在把物品的集合與集合(1,2,3,4,5)建立一一對(duì)應(yīng)的關(guān)系,正是因?yàn)槲锲窋?shù)量與集合(1,2,3,4,5)的元素個(gè)數(shù)相等,所以我們才說(shuō)物品共有5個(gè)。我寫(xiě)這篇文章的目的是把這些潛在的思路變得清晰,從而能用它解決更復(fù)雜的問(wèn)題。

  例3:9個(gè)人坐成一圈,問(wèn)不同坐法有多少種? 9個(gè)人排成一排,不同排法有9!種,對(duì)應(yīng)集合為前面的集合A 9個(gè)人坐成一圈的不同之處在于,沒(méi)有起點(diǎn)和終點(diǎn)之分。設(shè)集合D為坐成一圈的坐法的集合。以任何人為起點(diǎn),把圈展開(kāi)成直線,在集合A中都對(duì)應(yīng)不同元素,但在集合D中相當(dāng)于同一種坐法,所以集合D中每個(gè)元素對(duì)應(yīng)集合A中9個(gè)元素,所以S(D)=9!/9 我在另一篇帖子中說(shuō)的方法是先固定一個(gè)人,再排其他人,結(jié)果為8!。這個(gè)方法實(shí)際上是找到了一種集合A與集合D之間的對(duì)應(yīng)關(guān)系。用集合的思路解決問(wèn)題的關(guān)鍵就是尋找集合之間的對(duì)應(yīng)關(guān)系,使一個(gè)集合的子集與另一個(gè)集合的元素形成一一對(duì)應(yīng)的關(guān)系。

  例4:用1、2、3、4、5、6、7、8、9組成數(shù)字不重復(fù)的九位數(shù),但要求1排在2前面,求符合要求的九位數(shù)的個(gè)數(shù)。集合A為9個(gè)數(shù)的全排列,把集合A分為兩個(gè)集合B、C,集合B中1排在2前面,集合C中1排在2后面。則S(B)+S(C)=S(A)在集合B、C之間建立以下對(duì)應(yīng)關(guān)系:集合B中任一元素1和2位置對(duì)調(diào)形成的數(shù)字,對(duì)應(yīng)集合C中相同數(shù)字。則這個(gè)對(duì)應(yīng)關(guān)系為一一對(duì)應(yīng)。因此S(B)=S(C)=9!/2 以同樣的思路可解出下題:從1、2、3…,9這九個(gè)數(shù)中選出3個(gè)不同的數(shù)作為函數(shù)y=ax*x+bx+c的系數(shù),且要求a>b>c,問(wèn)這樣的函數(shù)共有多少個(gè)?

  例5:M個(gè)球裝入N個(gè)盒子的不同裝法,盒子按順序排列。這題我們已經(jīng)討論過(guò)了,我再用更形象的方法說(shuō)說(shuō)。假設(shè)我們把M個(gè)球用細(xì)線連成一排,再用N-1把刀去砍斷細(xì)線,就可以把M個(gè)球按順序分為N組。則M個(gè)球裝入N個(gè)盒子的每一種裝法都對(duì)應(yīng)一種砍線的方法。而砍線的方法等于M個(gè)球與N-1把刀的排列方式(如兩把刀排在一起,就表示相應(yīng)的盒子里球數(shù)為0)。所以方法總數(shù)為C(M+N-1,N-1) 例6:7人坐成一排照像, 其中甲、乙、丙三人的順序不能改變且不相鄰, 則共有多少種排法.。

  解:甲、乙、丙三人把其他四人分為四部分,設(shè)四部分人數(shù)分別為X1,X2,X3,X4,其中X1,X4》=0,X2,X3》0 先把其余4人看作一樣,則不同排法為方程 X1+X2+X3+X4=4的解的個(gè)數(shù),令X2=Y2+1,X3=Y3+1 化為求X1+Y2+Y3+X4=2的非負(fù)整數(shù)解的個(gè)數(shù),這與把2個(gè)球裝入4個(gè)盒子的方法一一對(duì)應(yīng),個(gè)數(shù)為C(5,3)=10 由于其余四人是不同的人,所以以上每種排法都對(duì)應(yīng)4個(gè)人的全排列4!,所以不同排法共有C(5,3)*4!=240種。集合的方法運(yùn)用熟練后,不需要每次具體設(shè)定集合,但頭腦中要有清晰的對(duì)應(yīng)關(guān)系。

返回頂部