當(dāng)前位置: 主頁 > 數(shù)學(xué) >

2016年MBA數(shù)學(xué)預(yù)熱輔導(dǎo):基礎(chǔ)習(xí)題及答案(一)

2015-04-03 11:02 | 太奇MBA網(wǎng)

管理類碩士官方備考群,考生互動,擇校評估,真題討論 點擊加入備考群>>

  太奇MBA希望繼續(xù)幫助2016年MBA管理類聯(lián)考進行備考工作,太奇MBA為新一年MBA考生們整理太奇權(quán)威深度解析2015年管理類聯(lián)考數(shù)學(xué)真題的同時,為大家整理數(shù)學(xué)重要考點及相關(guān)公式,希望能夠?qū)Υ蠹矣兴鶐椭?

  >>>2016年管理類聯(lián)考MBA招生簡章入口

  1、設(shè)10件產(chǎn)品中有4件不合格品,從中任取兩件,已知取出的兩件中有一件不合格品,求另一件也是不合格品的概率。(0.2)

  【思路】在"已知取出的兩件中有一件不合格品"的情況下,另一件有兩種情況(1)是不合格品,即一件為合格品,一件為不合格品(2)為合格品,即兩件都是合格品.對于(1),C(1,4)*(1,6)/C(2,10)=8/15;對于(2),C(2,4)/C(2,10)=2/15.提問實際上是求在這兩種情況下,(1)的概率,則(2/15)/(8/15 2/15)=1/5。

  2、設(shè)A是3階矩陣,b1,b2,b3是線性無關(guān)的3維向量組,已知Ab1=b1 b2, Ab2=-b1 2b2-b3, Ab3=b2-3b3, 求 |A| (答案:|A|=-8)

  【思路】A=(等式兩邊求行列式的值,因為b1,b2,b3線性無關(guān),所以其行列式的值不為零,等式兩邊正好約去,得-8)

  3、某人自稱能預(yù)見未來,作為對他的考驗,將1枚硬幣拋10次,每一次讓他事先預(yù)言結(jié)果,10次中他說對7次 ,如果實際上他并不能預(yù)見未來,只是隨便猜測,則他作出這樣好的答案的概率是多少?答案為11/64。

  【思路】原題說他是好的答案,即包括了7次,8次,9次,10次的概率. 即 C(7 10)0.5^7x0.5^3 ......C(10 10)0.5^10, 即為11/64.

  4、成等比數(shù)列三個數(shù)的和為正常數(shù)K,求這三個數(shù)乘積的最小值

  【思路】a/q a a*q=k(k為正整數(shù))

  由此求得a=k/(1/q 1 q)

  所求式=a^3,求最小值可見簡化為求a的最小值.

  對a求導(dǎo),的駐點為q= 1,q=-1.

  其中q=-1時a取極小值-k,從而有所求最小值為a=-k^3.(mba不要求證明最值)。

  5、擲五枚硬幣,已知至少出現(xiàn)兩個正面,則正面恰好出現(xiàn)三個的概率。

  【思路】可以有兩種方法:

  1.用古典概型 樣本點數(shù)為C(3,5),樣本總數(shù)為C(2,5)C(3,5)C(4,5)C(5,5)(也就是說正面朝上為2,3,4,5個),相除就可以了;

  2.用條件概率 在至少出現(xiàn)2個正面的前提下,正好三個的概率。至少2個正面向上的概率為13/16,P(AB)的概率為5/16,得5/13

  假設(shè)事件A:至少出現(xiàn)兩個正面;B:恰好出現(xiàn)三個正面。

  A和B滿足貝努力獨立試驗概型,出現(xiàn)正面的概率p=1/2

  P(A)=1-(1/2)^5-(C5|1)*(1/2)*(1/2)^4=13/16

  A包含B,P(AB)=P(B)=(C5|3)*(1/2)^3*(1/2)^2=5/16

  所以:P(B|A)=P(AB)/P(A)=5/13。


推薦文章:

  2015年管理類專業(yè)學(xué)位全國聯(lián)考數(shù)學(xué)真題(完整版)
  太奇王洋老師2015年管理類聯(lián)考數(shù)學(xué)真題解析視頻

推薦專題:

  2016年MBA VIP定制班輔導(dǎo)計劃

  2016年太奇MBA早起者 速度比激情更重要!

返回頂部